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Based on the molecular electron density lego assembler (MEDLA) method, a "computa- 
tional microscope" was developed that generates accurate images of bodies of large molecules 
at a resolution far exceeding current experimental techniques. The MEDLA "microscope" 
can be "tuned" to display the high electron density regions of formal chemical bonds; or to 
show the low density regions of hydrogen bonds and secondary interactions, or to display local 
shape requirements important in molecular recognition. The power of the method is illustrated 
by examples of detailed images of taxol, an important anti-cancer agent, and HIV-1 protease, 
a protein of 1564 atoms. A mathematical framework of the approach, based on fuzzy sets, and 
the fundamentals of several additional applications of the additive, fuzzy fragmentation princi- 
ple are presented. 

1. I n t r o d u c t i o n  

Unders tanding  chemistry, biochemistry, biotechnology, molecular  recognition, 
drug-receptor  interactions, and catalytic processes relies on the knowledge of  mole- 
cular  shapes [1]. The resolution of  current  X-ray experiments is suitable to deter- 
mine the location of  nuclei in proteins, but  is not  sufficient yet for a detailed shape 
analysis of  the body of  electron density at the chemically important ,  low density 
regions of  large molecules such as proteins. No  current  experimental  technique 
and, until the recent introduct ion of  the M E D L A  method  [2-5], no computa t ional  
model ing technique could generate reliable, high resolution images of  large mole- 
cules, and show what  they really are: bodies formed by fuzzy electronic charge den- 
sity clouds of  intricate shape features. Fused sphere Van der Waals (VDW) 
surfaces, and the improved solvent accessible surfaces mimic only the rough fea- 
tures of  electron density. Unti l  now, chemists have studied large molecules without  
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being able to see in reliable detail how these molecules look. Here we report the first 
accurate, detailed, high resolution images for a molecule beyond the 1500 atom 
limit, as well as some of the fundamental mathematical principles relevant to the 
current implementation and additional applications of the approach. 

The new computational microscope, based on the molecular electron density lego 
assembler method, in short, the MEDLA method [2-5], is suitable to generate and 
display highly detailed images of large molecular bodies at unprecedented resolu- 
tion. In reality, molecular bodies are fuzzy electronic charge densities, that until 
now could be displayed accurately only for small molecules. The new MEDLA 
computational microscope, developed for macromolecules, can be tuned to view 
any of the high or low density ranges. If tuned to high density, the pattern of bond- 
ing and details of nuclear neighborhoods are displayed, while tuning to intermedi- 
ate densities reveals space filling aspects, hydrogen bonding, and secondary 
interactions. At low densities, the space requirements, size and shape features rele- 
vant to molecular similarity and recognition are shown. All earlier models, such 
as wire frame and fused sphere models, fail to represent many of the details of mole- 
cular shapes revealed by the MEDLA images. The MEDLA computational micro- 
scope improves our "vision" considerably in the microscopic size range of nature; 
now we can view the molecular world in great detail, including both small and large 
molecules. 

The MEDLA computational microscope is based on the fuzzy electron density 
fragment additivity principle [2]. An electron density fragment data bank has been 
generated, based on accurate, high quality ab initio quantum chemical calculations 
for small molecules, and the application of the electron density fragmentation prin- 
ciple [2-4]. Ab initio quality electron densities can be constructed for large mole- 
cules, for any nuclear arrangement, using experimental or theoretically determined 
nuclear coordinates, or distorted arrangements assumed to occur along reaction 
paths or in protein folding processes. The "fuzzy" density fragments also account 
for the inter-fragment interactions occurring within their molecular neighbor- 
hoods. These fuzzy fragments are arranged and combined according to an interpe- 
netration pattern based on the additivity principle [2]. The additive, fuzzy 
fragmentation-density construction method is exact if a molecule is reconstructed 
from its fragments, and has been shown to be highly accurate when constructing 
other molecules [2,4], faithfully reproducing the shapes of molecular electron densi- 
ties [2], including those with hydrogen bonds and nonbonding interactions as calcu- 
lated at the standard 6-31G** ab initio level [4]. In sections 3-9 several aspects of 
the fragmentation scheme will be discussed, after the power of the method is 
demonstrated by examples and a summary of test results is given in sections 2 and 
3. The MEDLA method can be employed in molecular similarity studies [6], 
extending the scope of earlier techniques proposed for the local and global shape 
analysis of molecular fragments [7] and complete molecules [1 ]. 
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2. High resolution images of taxol and HIV-1 protease 

The protein molecule of this study required 21 fragment types, whereas the taxol 
molecule required several additional fragments from our MEDLA density frag- 
ment databank. Each fuzzy density fragment has been previously obtained from a 
6-31G** ab initio calculation for a smaller molecule, artificially distorted to match 
the nuclear geometry and local surroundings of the fragment in the target molecule 
(for more technical detail see later sections of this report). Hence, each fragment 
type is stored in several versions in the databank, for a range of several possible 
local nuclear arrangements. By selecting in each case the fragment with matching 
or nearly matching nuclear geometry, high accuracy can be achieved. Typical frag- 
ments are the methyl group, CH2, NH2, and the carboxyl group; an account of var- 
ious tests on hydrogen bonds and other interactions are described elsewhere [4]. 

Our first example, the taxol molecule of 113 atoms, is an important naturally 
occurring anti-cancer agent, synthesized recently [8,9]. In fig. 1, the stereochemical 
structure diagram of taxol, along with a MEDLA image tuned to high density 
showing the bonding pattern, are displayed. The structure was optimized using the 
BIOGRAF program [10]. Figure 2 shows four MEDLA images of taxol from the 
same perspective, "tuned" to electron densities 0.2 a.u. (atomic unit), 0.1, 0.01, 
and 0.001 a.u., respectively. These are images of 6-31G** ab initio quality molecu- 
lar isodensity contours (MIDCOs). Fine details of the bonding pattern, secondary 
interactions, the mutual interpenetrations of charge clouds between groups not for- 
mally linked by bonds, and the local shapes and space requirements of various func- 
tional groups are clearly shown. Conventional space filling models are unable to 
describe all of these features. The bonding regions between nuclei, nonbonded 
interactions, and hydrogen bonds, are poorly represented by fused sphere and simi- 
lar simple models, whereas the computed electron densities provide a far more 
accurate description. Furthermore, the shapes of aromatic rings at various density 
thresholds are not suitable for simple, fused-sphere or similar representations: as 
the 7r-electron density contribution becomes prominent at lower density thresholds, 
the isodensity contours show a remarkable "swelling" perpendicular to the approx- 
imate plane of the nuclei, whereas the contour changes very little along directions 
within the plane. 

For a molecule of this size, a direct ab initio calculation of similar quality would 
take many hours of CPU time on a Cray supercomputer; by contrast, the MEDLA 
computations require only 3 minutes of computer time on our KPC Titan 3000 
workstation. 

The HIV-1 protease monomer, a protein of 1564 atoms in 99 amino acid resi- 
dues, is by far the largest molecule to date for which ab initio quality electron den- 
sity calculation has ever been attempted. At present, a conventional ab initio 
calculation for proteins is impossible due to insurmountable RAM memory 
requirements. Were these memory problems circumvented, the calculation would 
still be impossible in practice, as we estimate that a direct, traditional ab initio com- 
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Fig. 1. Stereochemical structure formula of taxol (A) and a MEDLA computational microscope 
image (B) tuned to high density (0.2 atomic unit), showing the bonding pattern. 
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Fig. 2. Four MEDLA computational microscope images (A, B, C, and D) of the taxol molecule, tuned 
to density thresholds 0.2, 0.1, 0.01, and 0.001 a.u., respectively, shown from the perspective specified 

in fig. 1 (a.u. = atomic unit). 

puta t ion  for HIV-1 protease would take three centuries of  C P U  time on a Cray 
supercomputer .  By contrast ,  the M E D L A  computa t ion  on our worksta t ion took  
only 35 minutes, which represents more  than a millionfold improvement  over the 
speed of  a tradit ional ab initio method  of  similar, 6-31 G** accuracy. 

Figure 3 shows a compar ison and overview of  the wire-frame model  o f  HIV-  1 
protease,  based on the crystallographic coordinates [11], and three, 6-31G** ab 
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Fig. 3. An overview of the wire-frame model (A) and three MEDLA computational microscope 
images (B, C, and D), tuned to density thresholds 0.1,0.01, and 0.001 a.u., respectively, are shown for 
the HIV-1 protease protein. The monomer contains 1564-atoms in 99 residues; the structure shown 

is based on crystallographic coordinates. 

initio quality MEDLA images from the same perspective, "tuned" to electron den- 
sities 0.1, 0.01, and 0.001 a.u., respectively, whereas figs. 4, 5, and 6 show details 
of the three MEDLA images. The new MEDLA computational microscope gener- 
ates the entire electronic density for the protein, and can be tuned to any other den- 
sity thresholds, different from 0.1, 0.01, and 0.001 a.u. There is a wealth of shape 
and size features revealed at high, intermediate, and low electron densities. Hydro- 
gen bonding, and interactions between molecular regions not formally linked by 
chemical bonds are also easily recognizable. Conventional wire frame models, 
ball-and-stick models, and fused-sphere Van der Waals models fail to represent 
these features. No molecular images of comparable accuracy and resolution have 
been possible for proteins before the introduction of the MEDLA technique. 
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Fig. 4. Detailed MEDLA computational microscope image of the HIV-1 protease protein at the 
density threshold of 0.1 a.u. 

3. S u m m a r y  of  earlier test results 

The MEDLA method, in its simplest form, involves an additive, fuzzy electron 
density fragmentation scheme analogous to a Mulliken population analysis with- 
out integration (see refs. [2-5], and the next section). Even in this simplest form, the 
M E D L A  method has been shown to generate ab initio quality electron densities 
[2,4]. Detailed comparisons of electron densities computed by traditional ab initio 
SCF technique using 3-21G and 6-31G** basis sets, and by the MEDLA method 
have shown that the MEDLA result is invariably of  better quality than the standard 
3-21G ab initio result, and virtually indistinguishable from the standard ab initio 
6-31G** basis set result. Specific tests included: 
(a) detailed comparisons of electron densities obtained by traditional ab initio 
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Fig. 5. Detailed MEDLA computational microscope image of the HIV-1 protease protein at the den- 
sity threshold of 0.01 a.u. 

SCF calculations using 3-21G and 6-31G** bases, as well as MEDLA computa- 
tions for ¢/-alanine [2], 
(b) test of a prototype peptide system: traditional ab initio SCF calculations using 
3-21G and 6-31G** bases, as well as MEDLA computations for glycyl-alanine [4], 
(c) test of H-bonding in a helical tetrapeptide, using traditional ab initio SCF 3- 
21G and 6-31G** basis set calculations, as well as the MEDLA method [4], 
(d) test of a nonbonded interaction between a sulfur atom and a phenyl ring in a 
molecular fragment from the pentapeptide metenkephalin, using standard ab initio 
SCF 3-21G and 6-31G** basis set calculations, as well as the MEDLA technique 
[4]. 

Since the MEDLA performs consistently better than standard ab initio SCF 3- 
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Fig. 6. Detailed MEDLA computational microscope image of the HIV-1 protease protein at the den- 
sity threshold of 0.001 a.u. 

21G basis computations,  the claim of"ab  initio quality" is justified. These tests pro- 
vided further insight: according to the a = 0.007 a.u. (atomic unit) threshold den- 
sity contours for the hydrogen bonded system (test c), the traditional 3-21G result 
does not  show the hydrogen bond that is indicated by both the traditional 6-31G** 
and M E D L A  techniques, whereas according to the a = 0.003 a.u. contours for 
the S-Phe interaction (test d), the traditional 3-21G result indicates a bridging of  
the local density contours where still a gap exists according to both the traditional 
6-31G** and M E D L A  computations.  Hence, M E D L A  outperforms the standard 
3-21 G computat ions in an apparently unbiased way: indicating a feature where the 
standard 6-31G** result indicates it, and shows the lack of  a feature where it is lack- 
ing according to the standard 6-31G** result, used as a benchmark. 
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4. Compar i son  of  additive electron density f ragmenta t ion  schemes 

Electron density fragmentation schemes can be divided into two classes: those 
with boundaries and those without. Among schemes involving boundaries, the 
"atoms in molecules" method of Bader [12,13] has the most physical justification: 
this method generates molecular fragments based on the zero flux surfaces of the 
gradient of the electron density. Consequently, these fragments have boundary sur- 
faces of various shapes. When such fragments are combined to reconstruct the 
molecule of their origin, the reconstruction is exact. However, when such density 
fragments from different molecules are combined to form an approximate electron 
density of a new molecule, various degrees of discontinuities occur at the bound- 
aries, especially at low densities, where significant gaps can be found [14]. The gen- 
eral problem of density fragments with boundaries is illustrated in fig. 7, where 
the fragmentation schemes AB --~ A + B and CD -~ C + D, as well as the approxi- 
mate construction of a new molecule, A + D --+ AD are shown schematically. Evi- 
dently, the local surroundings of these fragments are different in different 
molecules, implying that the fragment boundaries of A and D do not precisely 
align. In general, there are errors of two types: density doubling (100% error) or 
density gaps (domains of zero density, 100% error). These errors are significant, 
since they are found at the locations where chemical bonding occurs. This high 
degree of local incompatibility between the transferred fragments is due to the pres- 
ence of non-matching boundaries, occurring between the three-dimensional frag- 
ments placed within the new molecular system. 

The MEDLA technique differs fundamentally from fragmentation approaches 
involving boundaries. The bodies of single, isolated atoms and molecules are fuzzy, 
borderless charge clouds, and the same applies for fragments within the M E D L A  
scheme. The MEDLA technique is based on an additive, fuzzy electron density 
fragmentation scheme, using boundaryless fragments, hence this scheme avoids 
the local accumulation of errors of schemes based on boundaries. 

The fuzzy fragmentation principle of the MEDLA method [2-4] is illustrated in 
fig. 8, where the fragmentation schemes AB--~A + B, CD---~C + D, and the 
approximate construction of the electronic density of a new molecule, 
A + D --~ AD, are shown. Each fuzzy MEDLA electron density fragment (A, B, C, 
and D) of the parent molecules (AB and CD in the example) is generated by specify- 
ing its "share" of the fuzzy molecular charge cloud, assigned to the subset of the 
nuclei of the fragment. Hence, there is no geometrical division of the electron den- 
sity of the parent molecule into parts with boundaries; the fragment densities A, 
B, C, and D of the example are analogous to the fuzzy, boundaryless electron densi- 
ties of complete molecules. These fuzzy electron density clouds of the fragments 
are formally "pulled out" from the molecular cloud. When these fuzzy fragments 
are used to construct the new molecule AD, the mutual interpenetration of the 
fuzzy fragments A and D prevents any local accumulation of error; there is neither 
density doubling nor density gap. 
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Fig. 7. The two types of errors of electron density construction schemes based on fragments with 
boundaries: "density doubling" and "density bubbles". Fragments with discrete boundaries, such as 
fragments with zero density flux boundaries obtained from the "atoms in molecules" approach, 
lead to 100% local errors of density doubling and density gaps, within the chemically important 

"bonding range" between the fragments. 

W i t h i n  the c o n v e n t i o n a l  S C F  L C A O  ab initio m eth o d ,  using a w a v e f u n c t i o n  
c o m p u t e d  for  a molecu le  o f  some f ixed c o n f o r m a t i o n  K,  the e lec t ron ic  dens i ty  p(r)  
c an  be  c o n s t r u c t e d  in t e rms  o f  a t omic  orbi ta ls  ~oi(r) (i = 1 , 2 , . . . ,  n), where  n is the 
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Fig. 8. A fuzzy electron density fragmentation scheme of boundaryless fragments used in MEDLA. 
This scheme, based on the mutual interpenetration of fuzzy electron density fragments, avoids the 

local accumulation of errors of  schemes based on boundaries. 

number of orbitals. If r is the three-dimensional position vector variable, and P is 
the n x n density matrix, then the electronic density p(r) of the molecule is calcu- 
lated as 

n n 

p(r) = ~ ~ P(i~oi(r)qoj(r). (1) 
i=1 j=l  

This electron density p(r) corresponds to the fuzzy "body" of the electronic charge 
cloud, providing a representation for the shape of the molecule. 

The simplest of the additive, fuzzy fragmentation schemes of MEDLA can be 
obtained by a technique analogous to the Mulliken population analysis without 
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integration. The fuzzy fragments are obtained from relatively small molecules for 
which traditional ab initio calculations are feasible. The kth fuzzy fragment pk (r) of 
the molecular electronic density p(r) can be defined for an arbitrary collection k 
of the nuclei of the molecule by first defining a fragment density matrix pk of the 
same n x n dimensions as that of the density matrix P of the complete molecule. 

The elements P~ of this n x n fragment density matrix pk for the kth fuzzy frag- 
ment pk (r) of the electron density p(r) are defined as follows: 

Pij if both qoi(r) and ~oj(r) are AO's centered on nuclei 

of the fragment, 

= 0 . 5 P i j  if precisely one of qoi(r) and qoj(r) is centered on (2) 

a nucleus of the fragment, 

0 otherwise. 

Based on this fragment density matrix pk, the electron density of the kth density 
fragment is defined [2] as 

n n 

pk(r) = ~ ~ P~0.~oi(r)~/(r). (3) 
i=1 j = l  

According to the fragmentation scheme, the nuclei of the molecule are distribu- 
ted into m mutually exclusive families of nuclei, dividing the molecule into m frag- 
ments. Consequently, the sum of the fragment density matrices pk is equal to the 
density matrix P of the molecule, and the sum of the pk(r) fragment densities is 
equal to the density p(r) of the molecule: 

Pij = ~ P~ (4) 
k = l  

and 
m 

o(r) =  pk(r). (5) 
k = l  

The above fuzzy electron density fragment additivity rules (2)=(5) are exact on 
the given ab initio LCAO level. That is, the reconstruction of the electronic density 
p(r) of the given small molecule from the corresponding fuzzy fragment electron 
densities pk(r) is exact. The scheme provides very satisfactory results for other 
molecules as well; all results reported in refs. [2,4,5], as well as those in the present 
report, have been obtained using the above simple scheme. 

A more convenient form of the above fragmentation scheme is given in terms 
of membership functions of nuclei within various molecular fragments. As before, 
we divide the set of nuclei of the molecule into m mutually exclusive groups, 
denoted by 
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J'] ,J2,. . .  ,fk,. • .fro, (6) 

in order to generate m density fragments, 

FI, F2,..., Fk,... Fro, (7) 

of fragment density functions 

pl (r), p2(r) , . . . ,  pk(r), . . ,  pm (r), (8) 

respectively. The membership function ink(i) ofAO 9~i(r) in the set of AO's centered 
on a nucleus of nuclear setfk of fragment Fk is defined as follows: 

1 if ~i(r) is centered on one of the nuclei of setfk 
rnk(i)= 0 otherwise. ' (9) 

In terms of these membership functions, the elements/~0 of the n x n fragment den- 
sity matrix pk of the kth fragment Fk is defined as 

P~0" = 0.5[mk(i) + mk(j)]Pij. (10) 

The above fuzzy electron density fragment additivity principle [2] can be used 
for constructing electron densities for other molecules, where the size limitations of 
conventional ab initio computations can be circumvented. The additivity scheme 
provides a basis for building approximate electron densities for truly large mole- 
cules. Pre-calculated electron density fragments stored in a databank can be com- 
bined to form an approximate electron density for a different molecule, by selecting 
and arranging fuzzy fragment densities so that the nuclear positions closely match 
those in the target molecule. This principle is the basis for the molecular electron 
density "lego" assembler (MEDLA) technique [2-5], that has been implemented in 
a computer program, MEDLA 93 [3]. 

The additive, fuzzy electron density fragmentation scheme described by eq. (2), 
equivalent to that of eq. (10), is a special case of a more general scheme [15]. The 
fuzzy molecular electron density fragment additivity principle [2] can be formu- 
lated within a more general framework [15]. In the simplest scheme (eq. (2) or 
eq. (10)) the interfragment electron density is distributed by weighting the relevant 
interfragment density matrix elements P0 by a factor of 0.5, and by including the 
resulting quantities in the fragment density matrix pk. However, the general addi- 
tivity properties can be maintained by other schemes which distribute the interfrag- 
ment electron density by some other weights. For example, formal fragment 
charges calculated in the parent molecules, or simple electronegativity comparisons 
can serve as the basis of alternative weighting schemes [15]. 

The more flexible weighting scheme described below leads to a more general elec- 
tron density fragment additivity principle: 
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PO" if both qoi(r) and qoj(r) are AO's centered 

on nuclei of fragment k,  

w(k, i,j)Pij if precisely one of the AO's ~,i(r) and 

~oj(r) is centered on a nucleus of fragment k, 

= where for the weighting factors the relations (11) 

w(k, i,j) >_ O, and w(k, i,j) + w(U, i,j) = 1 hold, 

where the fragment/d contains the nuclear 

center of the other AO, 

0 otherwise. 

For a physically valid additive scheme, the function w(k, i,j) must fulfill some 
additional conditions. For example, one may take a sign-preserving scalar property 
A (i) that can be assigned to atomic orbitals. Appropriately scaled electronegativity 
is such a scalar property. For any such scalar A(i) ,  the choice 

w(k , i , j )  -- A( i ) /[A( i )  + A(j)], (12) 

where orbital ~i(r) is centered on a nucleus that belongs to the kth fragment, fulfills 
the required conditions [15]. 

The more general scheme can also be introduced using the membership function 
formalism ofeq. (9), by taking 

1~i j = [mk( i)wij + rnk(j)wji]Pij , (13) 

where for the weighting factors wij, wji > 0, 

w O + wji = 1. (14) 

The simplest fragmentation scheme [2] corresponds to the choice of 

w~j = wj; = 0.5. (15) 

Based on the scalar property A (i) discussed above, a simple function wij can be cho- 
sen a s  

wij = A( i ) /[A( i )  + A(j)]. (16) 

Some non-additive schemes of generating pseudo-density matrices are also use- 
ful in the study of the local influence of molecular surroundings on the shapes of 
functional groups. According to one approach, a pseudo-density matrix .pk of a 
formal molecular fragment for a subset k of nuclei is defined by 

Pij if AO qoi(r) or ~j(r) is centered on a nucleus 

*P~,j = of the fragment, (17) 

0 otherwise. 
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The resulting pseudo-density * pk (r) of the fragment, 
n n 

• pk(r) = ~ ~--~*Pk.~i(r)(p:(r), (18) 
i=1  j = l  

incorporates an enhanced contribution from the surroundings of the local molecu- 
lar neighborhood, and can be used as a more sensitive diagnostic tool for the detec- 
tion of shape differences induced by the placement of functional groups within 
various molecular neighborhoods. Note, however, that these pseudo-densities 
• pk(r) of functional groups do not generate an additive scheme. Also note, that 
further enhancement of the shape-modifying effects of the molecular surroundings 
can be obtained by a progressive scaling of the interfragment contributions to the 
pseudo-density matrix .pk of a formal molecular fragment. Such progressive scal- 
ing can be obtained by taking 

• k Pij = [mk(i)mk(J) 4- (1 - mk(J'))mk(i)wij -t- (1 - mk(i))mk(J)Wji]Pij , ( 1 9 )  

with weighting factors 

Wij, Wji ) "  1. (20) 

By exaggerating the contributions of formal interfragment interactions, the numer- 
ical or visual detection and diagnosis of shape-modifying effects, represented 
numerically or displayed by formal isodensity contours, becomes a simpler task. 

The special scheme of eqs. (2)-(10), as well as the general scheme of eqs. (11)- 
(16) incorporates an additive assignment of the interfragment interactions to the 
various fragment densities. In fact, the density-modifying effect of the local mole- 
cular neighborhood is incorporated within the fragment density in an additive man- 
ner. The pattern displayed in fig. 9 illustrates the general principle, whereas 
fig. 10 shows a chemical example. Assume that the entire molecule, schematically 
represented by the 48 blocks of fig. 9, is too large for a traditional ab initio calcula- 
tion, however, ab initio electron densities for molecules of the size of 18 blocks can 
be computed directly. In such a case, one may designate the nuclei contained in 
each block as a nuclear set defining a fragment. For example, the fuzzy electron 
density fragment for the nuclear set of block F(3, 1, 3) can be calculated from the 
traditional ab initio electron density generated for the formal molecule of the 18 
block piece indicated by the heavy line in the fig., including the nuclei of blocks 
F(i, j, k) for 2 ~< i ~ 4, 1 ~<j ~ 2, and 2 ~ k ~ 4. The peripheral, "dangling" bonds can 
be tied down by additional H atoms. The local surroundings of fragment F(3, 1, 3) 
in this smaller molecule is the same as in the large target molecule. Hence, by gener- 
ating the fuzzy fragment density pF(3:,3) (r) for F(3, 1, 3) within the 18-block mole- 
cule, the appropriate "share" of local interactions, as distributed by the 
fragmentation scheme (2)-(10), are well represented in pF(3,1,3) (r), properly approx- 
imating these interactions as they are present within the large target molecule. 
Note that, the fragment electron density for F(2, 1,4) is taken from a different com- 
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Fig. 9. A schematic illustration of the treatment of fragment-neighborhood interactions. 

putation for another 18-block "molecule", the molecule obtained by tying down 
the "dangling" bonds at the periphery of the set of blocks F(i,j, k) for 1 ~< i ~< 3, 
1 ~<j ~< 2, and 2 ~< k 4 4. In effect, the principle of a "moving scaffold" is applied for 
each fragment when computing fragment densities. For each fragment density 
pF(ij,k) (r) the effect of the local surroundings is properly represented, and when all 
these density fragments are combined in order to construct the electron density of 
the large molecule, high accuracy can be obtained. 

The molecular example of fig. 10 shows three highlighted fragments, Fi, Fj, and 
Ff ,  as  parts of the target molecule M (top of the figure), as separate entities (at the 
middle of the figure), and also as parts of smaller molecules M(Fi), M(Fj), and 
M (Ff), (lower part of the figure), respectively. Within the latter three molecules the 
local molecular surroundings of these fragments are the same as in the target mole- 
cule M, whereas the distant parts of the target molecule are replaced by extra H 
atoms (denoted by outline font H). Consequently, the fragment densities Fi, Fj,  and 
Ff, obtained by an ab initio computation for the smaller molecules M(Fi), M(Fj), 
and M(Ff), followed by the application of the fragmentation procedure ofeqs. (2)- 
(10), properly and additively represent their density contribution (short range 
interactions included) to the target molecule, to a good approximation. By applying 
a similar procedure for all fragments of molecule M, and by properly aligning and 
adding these fragment densities, the MEDLA electron density of molecule M is 
obtained. 

Note that, the nuclei of fragment Fj are also present within molecule M(Fi), 
used to generate fragment density Fi. In fact, one could obtain an approximation to 
the Fj fragment density from the ab initio calculation of molecule M(Fi). However, 
within this molecule M (Fi) the surroundings of nuclei of fragment Fj do not mimic 
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Fig. 10. A chemical illustration of the treatment offragment-neighborhoodinteractions.  
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the actual surroundings in the target molecule M to the same level as these sur- 
roundings are reproduced in molecule M(Fj). Consequently, the actual fragment 
density used for Fj is determined from a calculation for molecule M(Fj), that pro- 
vides a higher level of accuracy. 

The accuracy of the approximation (within the given ab initio level of basis) 
depends on how large surroundings are included in the molecules M(Fi), M(Fj), 
and M(Ff). Clearly, if these molecules contain a larger portion of the target mole- 
cule M, a more accurate final electron density is obtained. 

It is possible to define formal fragments which are composed from non- 
interacting or weakly interacting parts. Fragment Fr of the example of fig. 10 is 
special, as it contains a formal hydrogen bond. Such fragments can be used to gen- 
erate electron densities of hydrogen bonds closely resembling those obtained by 
standard ab initio computations. Note, however, that for the shape description of 
hydrogen bonds high accuracy has been obtained without invoking this possibility, 
and it appears that a simple addition of fragment densities of the correct relative 
nuclear geometry of the hydrogen bond is sufficient to mimic the shapes of hydro- 
gen bond electron densities to a high degree of accuracy. In particular, in ref. [4], 
the shape of a hydrogen bond of a tetrapeptide has been computed by both tradi- 
tional ab initio 6-31G** and MEDLA techniques, where no actual MEDLA frag- 
ment containing a hydrogen bond was used. The results of standard ab initio 6- 
31G** and MEDLA techniques have been found visually indistinguishable. 

The pre-calculated, ab initio electron densities of fuzzy molecular fragments 
and functional groups, obtained from traditional ab initio calculations on small 
molecules, are stored in the MEDLA fragment density data bank. For simple mole- 
cules of standard or nearly standard nuclear arrangements, a small number of den- 
sity fragments are sufficient. Typically, saturated, unbranched hydrocarbons in 
stretched conformations can be described with sufficient accuracy using a few frag- 
ments. If, however, crowded conformations or molecules with more varied local 
moieties are considered, then specialized fragments are required. Such specialized 
fragments can be obtained from traditional ab initio computations of small mole- 
cules, where local surroundings and conformation of the fragment resembles those 
in the target molecule. In such cases, several specialized electron density fragments 
(called versions) may be required for each nuclear family (fragment type) to 
account for the special steric arrangements, local polarities and interactions. The 
MEDLA density fragment database can be continuously updated as needed; there 
is virtually no limitation on the number of specialized fragments one may include 
in the database. A CD ROM of approximately 660 megabytes of memory can store 
165 different density fragments of sufficient accuracy and variety for the calcula- 
tion of nearly 6-31G** ab initio quality MEDLA electron densities for most pro- 
teins. If a much larger density fragment databank is used, then the search for the 
appropriate fragment can become somewhat time consuming. 

Depending on the chemical problem, one may choose large or small fragments 
within the MEDLA scheme. The smallest fragments contain a single nucleus, such 
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as the example of the carbon fragment from the methane molecule, discussed in 
[2]. This actual carbon fragment clearly shows a density distribution characteristic 
of an sp3 neighborhood. Evidently, different versions of the carbon fragment are 
required for a slightly distorted methane, and certainly for an sp2-type or sp-type 
carbon density. If fragments with single nuclei are used, then a variety of fragments 
is required for each nucleus, to account for the variety of possible molecular neigh- 
borhoods where each fragment type may occur. 

The computational time required for the construction of MEDLA electron den- 
sities from pre-calculated fragment densities grows linearly with the number of 
fragments, hence it grows (essentially) linearly with molecular size. Consequently, 
the method is easily applicable to large molecules. This is in contrast with the time 
requirement of traditional SCF Hartree-Fock methods where for large molecules 
the dependence is dominated by the fourth power of the number of AO basis 
functions. 

The speed and accuracy of the MEDLA technique suggests new applications in 
the generation of "molecular level virtual reality". By simulating an excursion des- 
cending to the molecular world, for example, following the motion of a water mole- 
cule or a potential drug molecule within the interior of a protein cavity, only the 
locally "visible" portions of the molecules need be constructed, that can be 
achieved on a near real-time basis. This approach could give important insight for 
molecular modeling and drug design. The molecular electron density lego assembler 
may then serve as a "computational microscope", displaying the dynamic behavior 
of interacting molecules. 

5. General ized M E D L A  schemes 

Whereas the MEDLA method, in its simplest form [2], has been shown to gener- 
ate reliable, ab initio quality electron densities for large molecules [4,5], and the 
accuracy of these densities appears sufficient for many applications, nevertheless, 
it is possible to modify the scheme and further increase the accuracy of MEDLA 
electron densities, if needed. There are several alternative choices for fragment 
selection and possible improvements, at the expense of considerably increasing the 
required CPU and memory demand of the method. 

The need for local shape analysis of molecular fragments [7] has provided the ori- 
ginal motivation for selecting the density domains of molecules [1] as the basis for 
defining fragments. A density domain DD(a) is defined as a closed set in 3D space, 
enclosed by a MIDCO (molecular isodensity contour) G(a) of some density thresh- 
old a. An arbitrary selection of nuclei does not necessarily correspond to a density 
domain, for example, in the ethanol molecule, the nuclei of the terminal CH3 subset 
is not separated from the rest of the nuclei by a MIDCO for any threshold value 
[16]. In this sense, as manifested by electron density, the terminal CH3 moiety is not 
a functional group of separate identity; the local charge clouds around the two car- 
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bon nuclei join one another at a higher density threshold than the clouds around 
the H nuclei join the cloud around the terminal C nucleus. 

The pattern of density domains for the whole range of possible density thresholds 
a shows the gradual buildup of electron density as the bonding pattern of the mole- 
cule is established. Consequently, the subsets of nuclei enclosed within density 
domains at various thresholds are a natural choice as basis for fragmentation, fol- 
lowing the schemes discussed in the previous section. Hence, a fragmentation 
scheme can be based on density domains. 

An extreme alternative, mentioned in section 4 and illustrated by the example 
of a carbon fragment from ref. [2], is based on the smallest possible fragments, each 
containing a single nucleus. 

A useful fragmentation scheme, typically involving four nuclei for the position- 
ing of each fragment, is of special significance. Unless the four nuclei are coplanar, 
they define a tetrahedron. The electron distribution is dominated by the nuclear 
geometry, and for a small distortion of the tetrahedron the change of electron den- 
sity can be approximated by applying the same distortion to the density. Any non- 
coplanar, tetrahedral arrangement of four nuclei can be obtained by a 3D linear 
transformation from a reference tetrahedron. Note, however, that polyhedra of 
five or more nuclei do not have the analogous property. Consequently, the case of 
fragment nuclear positioning fully specified by four nuclei is special. If the required 
fragment has a nuclear geometry that does not exactly match the nuclear geometry 
of a corresponding fragment stored in the density databank, but the geometries 
are similar, then a rapid, approximate, linear scaling of the electron density can be 
applied using the linear geometrical transformation that interconverts the nuclear 
arrangements. If the geometry change is small, then this method generates good 
quality approximate electron densities for the required fragment. A detailed anal- 
ysis of this approach will be presented elsewhere [17]. 

The transformation itself can be obtained easily from the coordinates of four 
reference nuclei A, B, C, and D of the actual fragment in the target molecule and the 
coordinates of the corresponding four nuclei A', B', C% and D' in the fragment 
stored in the database. Three edge-vectors of each of the corresponding two tetra- 
hedra are defined as 

v (1) = A---~B, (21) 

v (2) = A --+ C,  (22) 

V (3) ~--- A ~ D,  (23) 

w (1) = A / --+ B', (24) 

w (2) = A' --,- C',  (25) 
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w (3) = A ' -+  D' ,  (26) 

respectively. It is useful to collect these column vectors into two matrices, V and 
W, with elements 

V O. = v~ i) (27) 

and 

wij = w~ i) , (28) 

respectively. We assume that nuclei A and A' are located at the origin of the coordi- 
nate system. The linear transformation T that converts the points of the A B e D  
tetrahedron into the corresponding points of the A'B'C'D' tetrahedron is defined 
by the relation 

TV = W ,  (29) 

that is, by 

T = W V  -1 . (30) 

The inverse matrix V -1 exists whenever the tetrahedron ABCD is nondegenerate, 
that is, whenever the four nuclei are not coplanar. 

In the database, reference nucleus A' is assumed to be at the origin. For the actual 
fragment A B e D  of the target molecule, the translation placing nucleus A to the ori- 
gin is denoted by S. The MEDLA density contribution PABCD (r) of the A B e D  frag- 
ment to each point r of the target molecule can be obtained as follows: 

PABCD (r) = PA'B'C'D' (TSr),  (31) 

where PA, B,C'D' (P) is the electron density of fragment A'B'C'D' at point p, stored 
in the MEDLA database. If the TSr transformation generates an out-of-range 
point p not stored in the database, then one sets 

PAUCD(r) = O. (32) 

If four nuclei, A, B, C, and D are coplanar but not colinear, then D is replaced 
by a noncoplanar dummy nucleus, and the chemical fragment involves only three 
actual nuclei, whereas if A, B, and C are colinear, then C is replaced by a nonco- 
linear dummy nucleus, and the fragment involves only two actual nuclei. 

Note that the above transformation generates no distortion of the tetrahedron 
A B e D  if the two tetrahedra are congruent, that is, if a fragment with the exact 
required nuclear geometry is found in the MEDLA database. In such a case, the 
electron density of the MEDLA database is used without distortion. In the case of 
exact coincidence of fragment nuclear geometries, an identical technique is also 
applicable for fragments involving more than four nuclei. If the nuclear geometries 
of such larger fragments do not coincide, then one may settle for lesser accuracy 
of the positions of nuclei additional to those defining the tetrahedron, and the 
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resulting lesser accuracy of electron density; in these cases the TS transformation 
still provides an approximate density transformation from the MEDLA database 
to the target molecule. If, however, high accuracy is required, then a new fragment 
density should be calculated with the exact nuclear geometry required, and this den- 
sity fragment can be added to the database. With the new fragment in the MEDLA 
database, all distortions due to the transformations are avoided. 

The size of fragments and the size of the "coordination shell" around them in 
the small molecule imitating the actual surroundings within the target molecule are 
limited only by the feasibility of traditional ab initio calculations. Satisfactory accu- 
racy has been achieved in all the test calculations performed. It is possible that for 
large, conjugated systems, long range interactions may require excessive sizes for 
the fragments and for their surroundings; nevertheless, this problem can be circum- 
vented. One approach is based on approximate periodicity: a periodic SCF techni- 
que can be used to generate a MEDLA fragment density, and this fragment can 
be built into the target molecule in the usual way. 

The simplest implementation of the MEDLA method provides no inherent safe- 
guards for total charge preservation. As the density fragments are superimposed, 
small deviations from the overall integer charge are possible. Although the overall 
accuracy of the MEDLA method implies that the error of total charge is likely to 
be very small, for specific purposes very high accuracy and an inherent condition of 
exact total charge preservation may be required. This can be achieved by a simple 
scaling of the MEDLA fragment densities during the course of the TS transforma- 
tion. In the simplest implementation of this approach, the actual MEDLA frag- 
ments can be selected so that their fragment charges are integers. A scaling factor 
f ,-~ 1.0 canbe determined for each fragment by anintegralcondition. Iftheintegral 
(in practice, numerical integral) of the electron density restricted to the actually 
TS-transformed part of the MEDLA fragment is Q', and the actual electronic 
charge required for the MEDLA fragment is Q, then the factor 

f = O / ~  (33) 

is applied for the electronic density: 

PABCD (r) = fPA'B'C'D' (TSr). (34) 

This scaled MEDLA approach ensures proper total charge conservation. 
It is also possible to scale the density fragment in the database to a prescribed 

electronic charge. To exploit this approach within a density grid approximation, 
one must ensure that all grid points and the corresponding densities of the given 
fragment of the database are transferred to the target molecule. This alternative 
allows one to store the properly scaled densities in the database, and there is no 
need for separate scaling in each instance the given database fragment is used. 

A third alternative involves a single scaling, carried out on the calculated elec- 
tron density as the final step. An integration (in practice, numerical integration) of 
the MEDLA density of the target molecule is performed, and a scaling f a c t o r f  is 



226 P.D. Walker, P. G. Mezey / Computationalmicroscope for molecules 

determined that converts the approximate electronic charge to the required integer 
value (usually, the nearest integer). This scaling factorf '  is then applied to the entire 
MEDLA electronic density of the target molecule, resulting in a scaled M E D L A  
density: 

PSCMEDLA (r) = ftPMEDLA ( r ) .  (3 5) 

The principle of additive, fuzzy electron density fragmentation is applicable 
within computational methods based on correlated wavefunctions and density 
functional theory. These approaches will be explored elsewhere. 

6. Three-dimensional  tiling approach for enhanced M E D L A  densities 

One enhancement of the accuracy of MEDLA electron densities is based on a 
method involving multiple tilings of the 3D space domain containing the target 
molecule. In the process of partially overlapping the fuzzy fragment densities in the 
target molecule, the electron densities are rather accurate near the centers of the 
fragments and the largest errors are expected at points where the density contribu- 
tions from neighboring fragments are approximately the same at the peripheral 
ranges of each fragment. With reference to the scheme of fig. 9, showing a rectan- 
gular compartmentalization of the nuclei of the target molecule, the errors of the 
MEDLA densities are expected to be the largest near the boundaries of these com- 
partments. Note that these compartment boundaries refer the partitioning of the 
nuclei into boxes, and the electronic clouds of the fuzzy density fragments them- 
selves have no boundaries and extend beyond the nuclear compartment bound- 
aries. It is possible to further increase the accuracy of the MEDLA densities by 
taking several, different compartmentalizations of the nuclei, ensuring that each 
boundary point of each compartment becomes an interior point of another com- 
partmentalization. By properly weighting and combining the MEDLA densities 
obtained for each compartmentalization, a more accurate electron density can be 
computed for the target molecule. 

The principle of this approach is illustrated by a two-dimensional example of 
2 2 = 4 different compartmentalizations (tilings) of the plane, shown in fig. 11. The 
edge length of each square is taken as 7r. The tiles indicated by the heavy solid lines 
correspond to the reference tiling A, and the tilings C, E and G are derived from 
A by translations, using the translation vectors (0, 7r/2), (7r/2, 0), and (7r/2, 7r/2), 
respectively. Each boundary point of each tile is an interior point of another tile in 
some other tiling scheme. 

The same principle is applied in the actual three-dimensional tiling approach, 
involving 2 3 = 8 different tiling schemes, A, B, C, D, E, F, G, and H, as shown in 
fig. 12. The edge length of each cube is taken as 7r. The centers of cubes for the eight 
different tilings are given by the vectors 

r'u,v,w(i,j , k) = [(i + 0.5u)zr, (j + 0.5v)Tr, (k + 0.5w)Tr], (36) 
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Fig.  11. A four - fo ld ,  t w o - d i m e n s i o n a l  t i l ing scheme .  

where these A, B, C, D, E, F, G, and H tilings follow the lexicographic order  o f  tri- 
ples (u, v, w), with the integers u, v, and w fulfilling 

O<.u,v,w<~l. (37) 

In order  to dist inguish the M E D L A  electron densities PMEDLA(r) obta ined  by 
the original technique f rom those generated by a tiling technique,  the no ta t ion  
d(r)  = d(x, y, z) will be used for the latter. 

The  electron density d(x, y, z) is calculated by a t r igonometr ic  weighting of the 
duvw (x, y, z) M E D L A  electron densities of  the individual  tilings: 

1 1 1 

d(x,y,z) = Z ~ ~ auvw(x,y,z)[u + (1 - 2u) cos 2 x] 
u=0 v=0 w=0 

x [v + (1 - 2v) cos2y]fw + (I - 2w) cos z z], (38) 

where for u = 0 

[u + (1 - 2u) cos 2 x] = cos 2 x ,  (39) 

and  for u = 1 

[u + (1 - 2u) cos 2 x] = 1 - cos 2 x = sin 2 x .  (40) 

The  above concise formula  for d(x, y, z) is equivalent  to the lengthier formula  given 
in fig. 12. Similarly to the two-dimensional  case, each bounda ry  poin t  of  each tile 
is an interior  point  of  another  tile in some other  tiling scheme. Fur the rmore ,  the tri- 
gonomet r i c  in terpola t ion formula  (38) between the individual  M E D L A  densities 
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Three-dimensional tiling 

C o o r d i n a t e s  o f  c e n t e r s  o f  c u b e s  o f  t i l i n g s  A, B, C, D, E, F, G, H: [ 
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The eight direct MEDLA electron densities by fragment 
generation using tilings A, B, C, D, E, F, G, end H ore: 

dA(X,y,z), dB(X,Y,Z), dc(x,y,z), dD(x,y,z), 

dE(X,y,z), d F(x,Y,Z), dG(X,y,z), dH(X,g,z). 

Enhanced MEDLA electron density by trigonometric interpolation: 

d(x,g,z)  = - . 2 2 2 - . 2 2 2 
dA(X,y,zJcos xcos ycos z + dB(x,y,zJcos xcos ys in z 

+ d c(X,y,z)cos2xsi  n:Zgcos 2 z + dD(X,y,z)cos2xsin2gsin 2 z 

2 2 2 + dE(X,g,z)sin2xcos2ycosZz + dF(X,y ,z )s in  xcos ys in  z 

+ d G(x,g,z)s i n2xsl n. 2ycos2z + dH (x ,y ,z )s i  n~xsin2gsi n 2z 

Fig. 12. An eight-fold, three-dimensional tiling scheme and trigonometric averaging for enhanced 
MEDLA electron densities. 

duvw(X, y, z) obtained in each of the eight tiling schemes ensures that for each tiling 
(u, v, w) the individual MEDLA contribution du~w(x, y, z) is weighted by zero for 
each boundary point of each tile, it is weighted by 1.00 for each midpoint of each 
tile, yet the sum of all weights of contributions d,w(x, y, z) adds up to a total weight 
of 1.00. This scheme is designed to eliminate most of the (already small) errors of 
the fuzzy density contributions at the boundaries of nuclear compartments, and to 
improve the overall accuracy of the approach. 
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The calculation of the d(x, y, z) interpolated MEDLA electron density requires 
approximately eight times more CPU time than the individual MEDLA densities 
duvw(x, y, z). Some care must be taken in order to avoid nuclear positions falling on 
tile boundaries. This problem can always be avoided by a small translation of the 
tiling schemes or by selecting a different edge length for the tiles (in fact, by selecting 
a different unit for length, since the edge length has a numerical measure of~r within 
the scheme). 

7. Fuzzy set approach to additive electron density fragmentation 

The fuzzy electron density contribution of each fragment to the points r of the 
three-dimensional space can be described by the methods of fuzzy set theory. One 
may ask the question: to which molecular fragment (density fragment) does the 
given point r belong? This problem can be phrased in terms of the following simple 
scheme. 

Consider the MEDLA electron density constructed according to the method 
described by eqs. (3) and (5), using any of the additive fragmentation schemes, such 
as those described by eq. (2), or by eqs. (11), (12), (13), (14), (16). In principle, 
each of the m density fragments, 

pl (r), pk (r),... pm (r), 
contribute to the overall MEDLA electron density at point r. With reference to 
the total MEDLA electron density 

m 

p(r) =  pk(r), 
k=l  

a fuzzy membership function of point r within each molecular fragment 

FI ,F2, . . . ,Fk, . . .Fm 

can be defined as 

#k(r) = pk(r)/p(r). (41) 

This membership function for point r expresses the degree of belonging of point r 
to fragment Fk, as expressed by the relative contribution of fragment density pk (r) 
to the total MEDLA electron density p(r) in the given molecule. The sum of these 
membership functions is unity, 

?71 

~--~/zk(r) = 1. (42) 
k=l 

For each point r the density fragment with the largest membership function value 
is regarded as the molecular moiety primarily occupying the given location r of 
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the three-dimensional space. If the density fragments are selected on the basis of a 
density domain criterion, then this fuzzy set approach provides a density-based cri- 
terion for deciding which functional group Fd exerts the dominant influence over 
a given region of space within a molecule. For the given region Rd, 

R d  = { r :  /xd(r  ) ----- max{#l( r ) ,#2(r ) , . . .#d(r ) , . . .~m(r)}} • (43)  

Usually, there is only a single maximum connected component for each index d, 
that is, for each functional group Fd. If there are two or more maximum connected 
components of Rd, this is an indication that the fragment Fd is subject to strong 
interfragment interactions within the target molecule, and Fd is likely to lack the 
property of possessing an isodensity contour within the target molecule that sepa- 
rates the nuclei of the fragment from all other nuclei of the target molecule. If this is 
the case, fragment Fd no longer qualifies as a density domain functional group, as 
it ceases to be one within the target molecule, even though it is a functional group 
within its parent molecule. 

8. A M E D L A - b a s e d  enhancement  o f  the X-ray structure ref inement process 
for better experimental  electron densities 

Diffraction intensities of X-ray structure determination serve as the basis of 
direct determination of atomic coordinates of molecular species forming a crystal 
[18]. In more conventional X-ray structure determination, the so-called phases of 
the diffracted waves are used. Exploiting the three-dimensional periodicity of the 
crystal, the electron density distribution p(r) is described by a Fourier series, 

p(r) = V -~ ~-~Fh exp( -27r ih- r ) ,  (44) 
h 

where V is the volume of the unit cell of the crystal, h is a vector of integral compo- 
nents h, k, and l, whose values are inversely proportional to the intercepts of the 
axes defining the unit cell with the imaginary plane Ph, cutting through the crystal, 
and the Fh structure factors are real or complex numbers representing the charac- 
teristics of the X-ray scattering associated with the planes Ph. The structure factors 
can be expressed as 

Fh = ]Fhl exp(i~bh), (45) 

where the angle ~bh is the phase associated with Fh. 
In most of X-ray structure determination approaches based on phases, the local 

electron density distributions are assumed to be spherical or elliptical, represented, 
for example, by spherical or elliptical gaussian functions. Based on an initial anal- 
ysis of the X-ray scattering results, and on accumulated information on the struc- 
ture of known molecular moieties, estimated nuclear coordinates and the gaussian 
electron densities associated with the assumed nuclear locations are used to inter- 
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pret the diffraction data. Usually, this is an iterative process, called structure refine- 
ment, where by gradually readjusting the assumed nuclear positions, and the asso- 
ciated gaussian electron density distributions, an improved agreement is obtained 
between the actual diffraction data and the nuclear geometry. 

The MEDLA method provides an improved representation of the electron den- 
sity distribution in the structure refinement process. For each assumed nuclear 
arrangement of the iterative process, a MEDLA electron density distribution can 
be computed, that can replace the gaussian density representations of the conven- 
tional technique by more realistic electron densities. In the process of X-ray struc- 
ture refinement, the MEDLA electron densities are updated (recalculated) in each 
step within the iterative scheme. 

In the context of the structure refinement process of X-ray crystallography, the 
advantages of more realistic densities obtained by MEDLA are twofold: 
(i) using a more faithful electronic charge density for each assumed nuclear geom- 

etry in the course of the iterative structure refinement process, the comparison 
with the experimental diffraction pattern in each iterative step becomes a 
more sensitive and more reliable criterion for accepting or rejecting an assumed 
structure, 

(ii) the more accurate density representation allows a more exhaustive interpreta- 
tion and utilization of the structural information contained in the experimental 
diffraction data. 

9. MEDLA-based conformation analysis approaches 

The electron densities computed by the MEDLA method form the basis of 
approximate energy relations. As follows from the fundamental theorems of den- 
sity functional theory, for the ground electronic state, the electron density deter- 
mines the energy. Whereas the actual construction of such energy functions from 
first principles is a problem that has not been solved yet satisfactorily for large 
molecules, the MEDLA scheme allows one to introduce a practical, approximate 
representation of molecular energy of large systems. Interfragment interactions 
can be modeled by semiclassical potentials, analogous to a molecular mechanics 
approach, where for the short range interactions quantum mechanical effects dom- 
inate, whereas for the long range interactions electrostatic and other steric effects 
are dominant. Such a scheme, described in detail elsewhere [17], is useful for gener- 
ating approximate energy functions and geometry optimization algorithms for 
macromolecular conformation analysis, protein folding problems, and intermole- 
cular interactions. For an improved energy representation, the atomic core regions 
require a higher resolution for density grid points, where a technique, analogous 
with the FSGH fused spheres guided homotopy method [1] of MIDCO modeling 
can be used. 

Within the interior of a globular protein, the actual space filling aspects are patti- 
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cularly well represented by a sequence o fMEDLA MIDCOs G(a) for different den- 
sity thresholds a. These space filling characteristics are determined by a merging 
of electronic density clouds between parts of the protein not linked directly by for- 
mal bonds. This is an important feature not well represented by earlier models, 
such as fused spheres VDW surfaces. The experience with protein MEDLA MID- 
COs indicates that these mergers start to occur simultaneously at about the same 
density threshold am, at many locations within the protein. As suggested in ref. [4], 
this trend, observed for the favored conformations of proteins, can give a tool for 
partially justifying favored mutual side chain arrangements and folding patterns. 

The simplest utilization of this idea is the basis for the Self-Avoiding MIDCO 
approach to macromolecular conformation analysis. By selecting a suitable critical 
threshold value am characterizing the onset of mergers, the corresponding MID- 
COs G(K, am) can be generated for a range of nuclear configurations K. A suitable 
threshold value for am is likely to fall within the range [0.003 a.u., 0.005 a.u.]. In 
addition to am, a suitable small tolerance criterion Aa <0.001 a.u. is chosen. For 
hydrogen bonds, regarded as a special case, a threshold aH ~ 0.007 a.u. appears 
appropriate. Alternatively, each interaction for all nuclear pairs, not represented 
by conventional bonds, can be assigned a specific critical threshold value or a range 
of threshold values, forming an interval including values for hydrogen bonds. 

A simple contact principle can be used for accepting and rejecting nuclear config- 
urations: 

A given configuration K is accepted if all nonbonded mergers which appear 
for MEDLA MIDCO G(K, am - Aa) and all hydrogen bonds which appear 
for M E D L A  MIDCO G(K, ah - Aa) are not yet merged in MEDLA MIDCOs 
G(K, am + Aa) and G(K, ah + Aa), respectively. 

If the nonbonded mergers, including hydrogen bonds, occur within the specified 
ranges, this conforms with the experience obtained with favored conformations of 
proteins. Hence, the above criterion is expected to serve as a valid basis for config- 
uration selection. By scanning a range of nuclear configurations K, one may maxi- 
mize the number of mergers fulfilling this criterion. The nuclear arrangement Kmm 
with the maximum number of proper mergers is expected to provide a good approx- 
imation to a preferred nuclear arrangement. 

Note that this approach cannot be regarded as a MIDCO version of hard surface 
contact models, such as those obtained using fused sphere VDW surfaces. The var- 
ious parts of a macromolecular MIDCO folding back upon itself readjust not 
only their local conformation but also their size. In contrast to fused sphere models, 
in the vicinity of a merger, the actual local shape of the MIDCO undergoes a dra- 
matic change. The mutual interpenetration of electron densities of molecular parts 
placed side by side increases the electron density of both parts, hence the MIDCO 
G(K, a) for the given threshold a shows a significant "swelling" directed towards 
the site of the eventual merger evident at some lower density threshold. This feature 
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of the Self-Avoiding MIDCO method is responsible for the incorporation of inter- 
actions into the conformation analysis approach, without actually relying on 
energy considerations. 

A simple, approximate conformational energy function can be based on a 
reward-and-penalty function associated with these mergers. A density threshold 
potential function, analogous in shape to a Morse potential where the distance vari- 
able is replaced by the value of the density threshold a where the merger occurs, 
can be associated with each merger. The (negative) minimum of each of these den- 
sity threshold potentials is at the am or ah value, for nonbonded interactions and 
hydrogen bonds, respectively, the potentials are zero for zero density threshold 
a = 0, and have high positive values for high density thresholds. A minimization of 
the sum of these potentials can be used in the search for favored nuclear arrange- 
ments K. Details of this technique will be presented elsewhere [17]. 

10. Closing remarks 

During the past decade computational quantum chemistry has become competi- 
tive with experimental structure determination methods for small molecules. The 
MEDLA method further enhances the quantum chemical approach, and the appli- 
cations of theoretically sound, physical approaches to biochemistry. The new 
MEDLA computational microscope, as applied to macromolecules such as pro- 
teins and other natural products, surpasses both the accuracy and scope of current 
experimental techniques for the generation of detailed, realistic molecular images; 
the new technique gives a detailed view of the molecular world. For the first time, 
reliable shape and size studies can be carried out for macromolecules of thousand 
atoms or more, which up till now were not amenable to high resolution experimen- 
tal or theoretical electron density determination. Using the MEDLA computa- 
tional microscope, biochemists will be able to visualize faithful, detailed images of 
the macromolecules they study. 

The numerical shape similarity measures, as applied to MEDLA electron densi- 
ties, are expected to become useful tools in computer-aided molecular engineering 
and pharmaceutical drug design. The MEDLA electron densities and associated 
molecular shape analysis may contribute important approaches to the solution of 
the most puzzling aspects of the formation of life-forming biopolymers [19]; in par- 
ticular, the natural selection of a relatively small number of definite-sequence poly- 
mers from the myriads of diverse possibilities. The MEDLA electron densities 
provide a shape-based selection criterion augmenting the tools used in a current 
approach to the problem of definite-sequence biopolymers [20,21]. 
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